## Dual 50MHz Comparator/Pin Receiver

## élantec.

The EL2252 dual comparator replaces the traditional input buffer + attenuator $+E C L$ comparator +ECL to TTL translator circuit blocks used in digital equipment. The EL2252 provides a quick 7ns propagation delay while complying with $\pm 10 \mathrm{~V}$ inputs. Input accuracy and propagation delay is maintained even with input signal Slew Rates as great as $4000 \mathrm{~V} / \mu \mathrm{s}$. The EL2252 can run on supplies as low as -5.2 V and +9 V and comply with ECL and CMOS inputs, or use supplies as great as $\pm 18 \mathrm{~V}$ for much greater input range.

The EL2252 has a /TTL pin which, when grounded, restricts the output $\mathrm{V}_{\mathrm{OH}}$ to a TTL swing to minimize propagation delay. When left open, the output $\mathrm{V}_{\mathrm{OH}}$ increases to a valid CMOS level.

The comparators are well behaved and have little tendency to oscillate over a variety of input and output source and load impedances. They do not oscillate even when the inputs are held in the linear range of the device. To improve output stability in the presence of input noise, an internal 60 mV of hysteresis is available by connecting the HYS pin to V-.

Elantec's products and facilities comply with MIL-I-45208A, and other applicable quality specifications. For information on Elantec's processing, see Elantec document, QRA-1; "Elantec's Processing, Monolithic Integrated Circuits".

## Features

- Fast response - 7ns
- Inputs tolerate large overdrives with no speed nor bias current penalties
- Propagation delay is relatively constant with variations of input Slew Rate, overdrive, temperature, and supply voltage
- Output provides proper CMOS or TTL logic levels
- Hysteresis is available on-chip
- Large voltage gain - 8000V/V
- Not oscillation-prone
- Can detect $4 n s$ glitches
- MIL-STD-883 Rev. C compliant


## Applications

- Pin receiver for automatic test equipment
- Data communications line receiver
- Frequency counter input
- Pulse squarer


## Ordering Information

| PART NUMBER | TEMP. RANGE | PACKAGE | PKG. NO. |
| :--- | :---: | :---: | :---: |
| EL2252CN | $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ | 14-Pin PDIP | MDP0031 |
| EL2252CM | $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ | 20-Pin SOL | MDP0027 |

## Pinouts



EL2252
(20-PIN SOL)
TOP VIEW


Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Voltage between V+ and V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 V
Voltage at V+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V
Voltage between -IN and +IN pins . . . . . . . . . . . . . . . . . . . . . . . . 36 V
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mA
Current into +IN,-IN, HYS or /TTL . . . . . . . . . . . . . . . . . . . . . . . 5mA

Internal Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . See Curves
Operating Ambient Temperature Range . . . . . . . . . $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . $150^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . -65 ${ }^{\circ}$ to +150C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

DC Electrical Specifications $\quad V_{S}= \pm 15 \mathrm{~V} ; \mathrm{HYS}$ and $/ T T \mathrm{~L}$ grounded; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

| PARAMETER | DESCRIPTION |  | TEMP | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OS }}$ | Input Offset Voltage |  | $25^{\circ} \mathrm{C}$ |  | 1 | 9 | mV |
|  |  |  | Full |  |  | 13 | mV |
| TCV ${ }_{\text {OS }}$ | Average Offset Voltage Drift |  | Full |  | 7 |  | $\mu \mathrm{V} / \mathrm{C}$ |
| $\mathrm{I}_{\mathrm{B}}$ | Input Bias Current at Null |  | $25^{\circ} \mathrm{C}$ |  | 6 | 16 | $\mu \mathrm{A}$ |
|  |  |  | Full |  |  | 21 | $\mu \mathrm{A}$ |
| los | Input Offset Current |  | $25^{\circ} \mathrm{C}$ |  | 0.2 | 1 | $\mu \mathrm{A}$ |
|  |  |  | Full |  |  | 2 | $\mu \mathrm{A}$ |
| $\mathrm{R}_{\text {IN }}$, diff | Input Differential Resistance |  | $25^{\circ} \mathrm{C}$ |  | 30 |  | $\mathrm{k} \Omega$ |
| $\mathrm{R}_{\text {IN }}$, comm | Input Common-Mode Resistance |  | $25^{\circ} \mathrm{C}$ |  | 10 |  | $\mathrm{M} \Omega$ |
| $\mathrm{C}_{\text {IN }}$ | Input Capacitance |  | $25^{\circ} \mathrm{C}$ |  | 2 |  | pF |
| $\mathrm{V}_{\mathrm{CM}^{+}}$ | Positive Common-Mode Input Range |  | Full | 10 | 13 |  | V |
| $\mathrm{V}_{\mathrm{CM}}{ }^{-}$ | Negative Common-Mode Input Range |  | Full | -9 | -12 |  | V |
| Avol | Large Signal Voltage Gain $\mathrm{VO}=0.8 \mathrm{~V}$ to 2.0 V |  | $25^{\circ} \mathrm{C}$ | 4000 | 8000 |  | V/V |
|  |  |  | Full | 3000 |  |  | V/V |
| CMRR | Common-Mode Rejection Ratio (Note 1) |  | Full | 70 | 95 | II |  |
| PSRR | Power-Supply Rejection Ratio (Note 2) |  | Full | 70 | 90 | 11 |  |
| $\mathrm{V}_{\mathrm{HYS}}$ | Peak-to-Peak Input Hysteresis with HYS connected to V- |  | $25^{\circ} \mathrm{C}$ | 60 |  | V |  |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output | CMOS Mode | Full | 4.0 | 4.6 | 5.1 | V |
|  |  | TTL Mode | Full | 2.4 | 2.7 | 3.2 | V |
| VOL | Low Level Output | $\mathrm{I}=0$ | Full | -0.2 | 0.2 | 0.8 | V |
|  |  | $\mathrm{I} 1=5 \mathrm{~mA}$ | Full | -0.2 | 0.4 | 0.8 | V |
| IS ${ }^{+}$ | Positive Supply Current |  | Full | 16 | 19 | 11 |  |
| Is- | Negative Supply Current |  | Full | 17 | 20 | 11 |  |

NOTES:

1. Two tests are performed with $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to -9 V and $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to 10 V .
2. Two tests are performed with $\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}$ - changed from -10 V to -15 V ; $\mathrm{V}-=-15 \mathrm{~V}, \mathrm{~V}+$ changed from 10 V to 15 V .

AC Electrical Specifications $\quad V_{S}= \pm 15 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{TTL}$ output threshold is $1.4 \mathrm{~V}, \mathrm{CMOS}$ output threshold is 2.5 V ; unless otherwise specified.

| PARAMETER | DESCRIPTION |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{PD}+}, \mathrm{T}_{\mathrm{PD}}$ | Input to Output Propagation Delay, $0<\mathrm{V}_{\mathrm{IN}}<5 \mathrm{~V}, 500 \mathrm{mV}$ Overdrive, 2000V/ $\mu \mathrm{s}$ Input Slew Rate | TTL Output Swing |  | 6 | 9 | ns |
|  |  | CMOS Output Swing |  | 8 |  | ns |
| $\mathrm{T}_{\mathrm{PD}+}, \mathrm{T}_{\mathrm{PD}-}$ | Input to Output Propagation Delay, $-2 \mathrm{~V}<\mathrm{V}_{\text {IN }}<-1 \mathrm{~V}, 500 \mathrm{mV}$ Overdrive, 2ns Input Rise Time | TTL Output Swing |  | 5 | 9 | ns |
|  |  | CMOS Output Swing |  | 9 |  | ns |
| TPDSYM | Propagation Delay Change between Positive and Negative Input Slopes |  |  | 1.25 |  | ns |

## AC Test Circuit



## Burn-In Circuit



## Typical Performance Curves




Input/Output Transfer Function - HYS Open




Input/Output Transfer Function - HYS Connected to V


## Typical Performance Curves (Continued)



## Typical Performance Curves (Continued)







## Simplified Schematic



## Applications Information

The EL2252 is very easy to use and is relatively oscillationfree, but a few items must be attended. The first is that both supplies should be bypassed closely. $1 \mu \mathrm{~F}$ tantalums are very good and no additional smaller capacitors are necessary. The EL2252 requires V - to be at least 5 V to preserve AC performance. $\mathrm{V}+$ must be at least 6 V for a TTL output swing, 8 V for CMOS outputs.
The input voltage range will be referred to the more positive of the two inputs. That is, bringing an input as negative as V will not cause problems; it's the other input's level that must be considered. The typical input range is $+13 /-12 \mathrm{~V}$ when the supplies are $\pm 15 \mathrm{~V}$. This range diminishes over temperature and varies with processing; it is wise to set power supplies such that $\mathrm{V}+$ is 5 V more positive than the most positive input signal and V - more negative than 6 V below the most negative input. $\pm 12 \mathrm{~V}$ supplies will easily encompass all CMOS and ECL logic inputs. If the input exceeds the device's common-mode input capability, the EL2252 propagation delay and input bias current will increase. Fault currents will occur with inputs a diode below V - or above $\mathrm{V}+$. No damage nor $\mathrm{V}_{\text {OS }}$ shift will occur even when fault currents within the absolute maximum ratings.

One of the few ways in which oscillations can be induced is by connecting a high- $Q$ reactive source impedance to the EL2252 inputs. Such sources are long wires and unterminated coaxial lines. The source impedance should be de-Q'ed. One method is to connect a series resistor to the EL2252 input of around $100 \Omega$ value. More resistance will calm the system more effectively, but at the expense of
comparator response time. Another method is to install a "snubber" network from comparator input to ground. A snubber is a resistor in series with a small capacitor, around $100 \Omega$ and $33 p F$. Each physical and electrical environment will require different treatments, although many need none.

The major use of the HYS pin is to suppress noise superimposed on the input signal. By shorting the HYS pin to V - $\mathrm{a} \pm 30 \mathrm{mV}$ hysteresis is placed around the $\mathrm{V}_{\mathrm{OS}}$ of the comparator input. Leaving the pin open, or more appropriately, grounding the HYS pin removes all hysteresis. Connecting a resistor between HYS and V- allows an adjustment of the peak-to-peak hysteresis level. Unfortunately, an external resistor cannot track the internal devices properly, so temperature and unit-to-unit variations of hysteresis are increased. The relationship between the resistor and resulting hysteresis level is not linear, but a 1.5 k resistor will approximately halve the nominal value.

The time delay of the EL2252 will increase by about 0.7 ns when using full hysteresis.

The EL2252 is specifically designed to be tolerant of large inputs. It will exhibit very much increased delay times for input overdrives below 100 mV . If very small overdrives must be sensed, the EL2018 or EL2019 comparators would be good choices, although they lose accuracies with signal input Slew Rates above 400V/ $\mu \mathrm{s}$. The EL2252 keeps its timing accuracy with input Slew Rates between $100 \mathrm{~V} / \mathrm{\mu s}$ and $4000 \mathrm{~V} / \mu \mathrm{s}$ of input Slew Rate.

The output stage drives tens of pF load capacitances without increased overshoot, but propagation delay increases about

1 ns per 10 pF . The output circuit is not a traditional TTL stage, and using an external pullup resistor will not change the $\mathrm{V}_{\mathrm{OH}}$. In general setting the output swing to TTL (by

## EL2252 Macromodel

* Connections: +input

. Application Hints:
* Connect pin 4 to ground through $1000 \mathrm{M} \Omega$ resistor to inhibit
* Hysteresis; to invoke Hysteresis, connect pin 4 to V-.
* 
* Connect pin 5 to ground to invoke $T T L \mathrm{~V}_{\mathrm{OH}}$; pin 5 may left open
${ }^{*}$ for $\mathrm{CMOS} \mathrm{V}_{\mathrm{OH}}$.
* To facilitate .OP, set $\mathrm{it} \mid 1=200$, $\mathrm{it} \mid 2=200$, set node 27 to 13.8 V ,
* and node 30 to -12 V .
* 

*Input Stage
*
i1 2271.7 mA
r1 1420300
r2 1421300
q1 20222 qn
q2 21322 qn
q3 202623 qn q4 212523 qn q13 252720 qp q14 262721 qp v1 1427 1.2V r3 2324 1.4k d1 244 ds r4 2533700 r5 2633700
q16 333334 qn
q17343437 qn v4 3771.2 V
*

* 2nd Stage
* 

i2 3073 mA
i3 14281.5 mA
q7 03528 qp
v2 4401.2 V
s1 443550 swa s2 453550 swb rsw 145 10k v3 4502.5 V q5 02630 qn q6 282530 qn d3 028 ds
grounding the /TTL pin) will optimize overall propagation delay and $\pm$ swing symmetry.
*

* Output Stage
* 

i4 14381 mA
q8 383839 qn
q9 323239 qp
q10 72832 qp
q11 143840 qn 2
q12 72813 qp 2
r6 401350
c1 2803 pF
*

* Models
* 

.model qn npn (is=2e-15 bf=120 tf=0.2nS cje=0.2pF cjc=0.2pF ccs=0.2pF)
.model qp pnp (is = $0.6 \mathrm{e}-15 \mathrm{bf}=60 \mathrm{tf}=0.2 \mathrm{nS}$ cje $=0.5 \mathrm{pF} \mathrm{cjc}=0.3 \mathrm{pF}$ ccs $=0.2 \mathrm{pF}$ )
.model ds d (is $=3 \mathrm{e}-12 \mathrm{tt}=0.05 \mathrm{nS}$ eg $=0.72 \mathrm{~V} \mathrm{vj}=0.58$ )
.model swa vswitch (von=0v voff=2.5V)
.model swb vswitch (von=2.5 voff=0V)
.ends

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

